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Abstract

The disambiguation of a syntactically ambiguous sentence in favor of a less preferred parse can

lead to slower reading at the disambiguation point. This phenomenon, referred to as a garden-path

effect, has motivated models in which readers initially maintain only a subset of the possible parses

of the sentence, and subsequently require time-consuming reanalysis to reconstruct a discarded parse.

A more recent proposal argues that the garden-path effect can be reduced to surprisal arising in a

fully parallel parser: words consistent with the initially dispreferred but ultimately correct parse are

simply less predictable than those consistent with the incorrect parse. Since predictability has perva-

sive effects in reading far beyond garden-path sentences, this account, which dispenses with reanalysis

mechanisms, is more parsimonious. Crucially, it predicts a linear effect of surprisal: the garden-path

effect is expected to be proportional to the difference in word surprisal between the ultimately cor-

rect and ultimately incorrect interpretations. To test this prediction, we used recurrent neural network

language models to estimate word-by-word surprisal for three temporarily ambiguous constructions.

We then estimated the slowdown attributed to each bit of surprisal from human self-paced reading

times, and used that quantity to predict syntactic disambiguation difficulty. Surprisal successfully pre-

dicted the existence of garden-path effects, but drastically underpredicted their magnitude, and failed

to predict their relative severity across constructions. We conclude that a full explanation of syntactic

disambiguation difficulty may require recovery mechanisms beyond predictability.
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1. Introduction

Ambiguity is pervasive in human language, and syntactic structure is no exception. In

many temporarily ambiguous sentences, where the beginning of a sentence is compatible with
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multiple syntactic parses, readers consistently prefer one of those parses to the alternatives.

Consider the following sentence:

1. Even though the girl phoned the instructor was very upset with her for missing a lesson.

After they have read the first few words of (1), readers tend to prefer the interpretation in

which the girl phoned the instructor; in other words, they prefer to parse the instructor as the

direct object of phoned. When the reader reaches the subsequent verb was, it becomes clear

that this initially preferred interpretation leaves no viable subject for this verb. Empirically,

reading times at the disambiguating region was very upset are elevated compared to those

measured on the same words when they are encountered in the following, minimally different,

unambiguous sentence:

2. Even though the girl phoned, the instructor was very upset with her for missing a

lesson.

In example (2), the comma forces an intransitive interpretation of phoned: when the comma

is present, readers are very unlikely to consider the interpretation in which the girl phoned the

instructor. Following earlier work, we will refer to the words was very upset as the critical

region, and to the difference in reading times in this region between (1) and (2) as a garden

-path effect (Bever, 1970).

Garden-path effects have motivated cognitive theories in which, at each point of the sen-

tence, readers consider only one of the possible partial parses of the sentence (Frazier &

Fodor, 1978; Pritchett, 1988), or consider only a small number of possible parses (Gibson,

1991; Jurafsky, 1996). In those theories, processing difficulty in the critical region arises as

a consequence of the reanalysis required to reconstruct a parse that was initially entertained

and then discarded, or not considered in the first place, but that later turned out to be correct

(Bader, 1998; Gorrell, 1995; Pritchett, 1988; Sturt, 1997; Sturt & Crocker, 1996). We refer to

these theories as two-stage accounts.

In contrast with such two-stage accounts, some recent accounts, such as surprisal theory

(Hale, 2001; Levy, 2008b) and the entropy reduction hypothesis (Hale, 2003), have attempted

to derive garden-path effects from a single unified mechanism, typically based on a fully

parallel probabilistic parser. Under such one-stage accounts, readers do not discard dispre-

ferred parses; rather, they maintain those parses, but associate them with a lower probability

compared to that of the preferred parse. Processing difficulty on every word in the sentence,

including the disambiguating words in garden-path sentences, arises from the extent to which

the word shifts the reader’s subjective probability distribution over possible parses: “the same

sorts of phenomena treated in reanalysis and bounded parallelism parsing theories fall out as

cases of the present, total parallelism theory” (Hale, 2001, p. 6, referring to surprisal theory).

If such a one-stage theory is consistent with the empirical data, it is arguably preferable to

two-stage models on parsimony grounds: a theory based on one mechanism is simpler than

a theory based on two mechanisms. For example, if word predictability—an independently

motivated predictor of reading times (Ehrlich & Rayner, 1981; Rayner & Well, 1996; Smith &

Levy, 2013)—can account for reading behavior in garden-path sentences, there is no reason
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to posit an additional reanalysis mechanism that comes into play only at the point where

temporarily ambiguous sentences are disambiguated.

The goal of the present paper is to investigate the viability of one-stage accounts of garden-

path effects. We focus in particular on surprisal, which in a prior work has accounted for syn-

tactic disambiguation difficulty more successfully than entropy reduction (Linzen & Jaeger,

2016). Under the surprisal account, syntactic disambiguation difficulty emerges as a special

case of the pervasive effects of word predictability in language comprehension (Demberg

& Keller, 2008; Ehrlich & Rayner, 1981; Roark, Bachrach, Cardenas, & Pallier, 2009; van

Schijndel, Schuler, & Culicover, 2014). In case of the comparison between the ambiguous

sentence (1) and its unambiguous counterpart (2), for example, surprisal theory posits that

the word was is read more slowly in (1) simply because it is less predictable in that context,

which, in turn, is due to the fact that it is only consistent with a low-probability parse (Hale,

2001; Levy, 2013).

Computational simulations have demonstrated that the words of the critical region are

indeed less predictable in temporarily ambiguous sentences than in unambiguous controls.

Levy (2013), for example, showed this to be the case for the so-called NP/Z (noun phrase/zero

complement) ambiguity illustrated in example (1) above, and concluded that “surprisal the-

ory correctly predicts the difference in processing difficulty due to… garden pathing” (Levy,

2013, p. 94). While such simulations are consistent with the predictions of surprisal theory,

we argue, the conclusion that garden-path effects can be reduced to predictability is prema-

ture, for two reasons. First, if surprisal alone is expected to explain disambiguation difficulty

in garden-path sentences, word predictability would need to account for the differences in

difficulty across different types of temporarily ambiguous sentences. For example, in the fol-

lowing sentence, as in (1) above, a NP (here, the contract) is initially likely to be interpreted

as a direct object; unlike in (1), however, the disambiguating word (would) signals that this

NP needs to be reanalyzed as the subject of a subordinate clause:

3. The employees understood that the contract would be changed very soon to accom-

modate all parties.

Despite the superficial similarity of so-called NP/S sentences such as (3) to NP/Z sen-

tences such as (1), the empirical slowdown measured at the disambiguation point is more

moderate in NP/S than NP/Z sentences (Pritchett, 1988; Sturt, Pickering, & Crocker, 1999).

Two-stage models have attributed this difference to properties of the second-stage reanalysis

mechanism: certain syntactic restructuring operations are argued to be more costly than others

(Bader, 1998; Pritchett, 1988). This option is not available to one-stage accounts: the surprisal

hypothesis can only derive the greater disambiguation difficulty observed in NP/Z sentences

if the difference in the predictability of the disambiguating word was between the ambigu-

ous NP/Z sentence and its unambiguous control is greater than the analogous difference in

NP/S sentences.

The second challenge that one-stage models face is the need to account for the full mag-

nitude of the garden-path effect observed in each type of ambiguity. The surprisal hypothesis

predicts that the same linear relationship between surprisal and reading time—or, equiva-

lently, the same logarithmic relationship between predictability and reading time—should
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hold regardless of whether the sentence is ambiguous or unambiguous: all else being equal,

halving the conditional probability of a word in context (from p to p/2) should cause read-

ing times to increase by a constant increment, regardless of the word’s syntactic role and its

conditional probability p. Smith and Levy (2013) report that dividing predictability by two—

resulting in an additional “bit” of surprisal—leads to a slowdown of approximately 4 ms in

self-paced reading experiments. By contrast, the garden-path effects reported in the litera-

ture are often in the order of magnitude of dozens of milliseconds; for example, Grodner,

Gibson, Argaman, and Babyonyshev (2003) report a 70 ms garden-path effect for NP/Z sen-

tences. For surprisal to explain such a difference, the surprisal of was in (1) needs to be about

70/4 = 17.5 bits higher than the surprisal of the same word in (2). Given the logarithmic

relationship between surprisal and conditional probability, this means that the probability of

was needs to be 217.5 ≈ 185, 000 times higher in the ambiguous sentence than in the unam-

biguous sentence. It is an open question whether the difference in the predictability of the

critical region between ambiguous and unambiguous sentences is in fact quite this large.

To adopt the taxonomy of cognitive model predictions proposed by Padó, Crocker, and

Keller (2009), these challenges to surprisal theory arise from the fact that the theory not only

makes qualitative predictions as to the existence of a processing difficulty but also makes rel-

ative predictions about the degree of processing difficulty in different contexts, and absolute-

quantitative predictions about the precise magnitude of that processing difficulty. This is

clearly a virtue of surprisal theory or the entropy reduction hypothesis compared to verbal

models, which make much weaker predictions; but, we argue that these stronger predictions

invite a more detailed empirical assessment than has been attempted in the past. In this work,

we investigate the ability of quantitative single-stage models to predict, in each of these three

senses, the garden-path effects observed in human self-paced reading studies.

1.1. Estimating predictability using computational language models

How can we obtain quantitative estimates of the predictability of a word? Traditionally,

predictability estimates were obtained by asking participants to perform a cloze task (Tay-

lor, 1953). To estimate the predictability of was in (1), for example, participants would be

asked to complete the fragment Even though the girl phoned the instructor. The probability

of was in context would then be estimated as the proportion of participants who completed

the fragment with was. While this method can distinguish highly predictable words (e.g.,

P(w|context) = 0.8) from moderately predictable words (e.g., P(w|context) = 0.1), it is not

effective for making distinctions among lower probability words, such as the disambiguating

words in different types of garden-path sentences: even if we assume, contra certain serial

parsing theories (Frazier, 1979), that participants performing the cloze task occasionally con-

sidered the dispreferred parse before the disambiguation point, millions of participants may be

required to accurately estimate the very low probabilities that, according to surprisal theory,

likely characterize the disambiguating words in garden-path sentences.

An alternative approach to estimating the predictability of words relies on probabilistic

language models, computational systems that use a large training corpus to define probability

distributions over sequences of words (Goodman, 2001). Such models are better positioned
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than cloze tasks to estimate continuation probabilities on the order of magnitude of 2−18,

which, as discussed in the introduction, may be required to derive a 70 ms empirical effect

from surprisal theory.

Probabilistic language models can be based on a range of computational architectures.

Many of the words in typical sentences can be predicted well from local context using n-gram

models, which are based on tabulating the frequency of short word sequences in a corpus

(Goodman, 2001; Smith & Levy, 2013). By contrast, estimating predictability in syntacti-

cally complex sentences requires models that are sensitive to much larger contexts. Most work

on syntactically complex sentences in computational psycholinguistics has relied on language

models based on probabilistic grammars (Hale, 2001; Stolcke, 1995). Recently, recurrent neu-

ral network (RNN) language models (Elman, 1991; Mikolov, Karafiát, Burget, Cernockỳ, &

Khudanpur, 2010) have been shown to make remarkably accurate word predictions compared

to earlier classes of language models (Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016).

While such models are not explicitly designed to construct syntactic parses, and are not pro-

vided any syntactic annotations during training, recent empirical studies have shown that the

probability distributions defined by those models reflect sensitivity to a range of structural

properties of the sentence (Futrell et al., 2019; Gulordava, Bojanowski, Grave, Linzen, &

Baroni, 2018; Linzen, Dupoux, & Goldberg, 2016; Wilcox, Levy, Morita, & Futrell, 2018).

Such highly accurate language models open up the possibility of deriving more precise pre-

dictability estimates for garden-path sentences than was possible with earlier grammar-based

language models.

1.2. Overview of experiments

To test the surprisal account of garden-path effects, we use surprisal estimates derived from

RNN language models to simulate the results of publicly available self-paced reading data.

The data include reading times for NP/Z sentences, NP/S sentences (where S stands for sen-

tential complement), and sentences with ambiguous reduced relative (RR) clauses, modeled

after the classic ambiguity the horse raced past the barn fell (MV/RR sentences, where MV

stands for main verb, Bever 1970); these constructions are described in more detail in Sec-

tion 2.1. To estimate the overall correlation between language model surprisal and reading

times, we use reading times on filler sentences that do not contain these three types of tem-

porary syntactic ambiguity; we then apply the same correlation coefficient to predict reading

times from model-derived surprisal for garden-path sentences. In calculating the slowdown

that can be attributed to a particular unpredictable word, we pay careful attention to the possi-

bility that self-paced reading time on a given word reflects processing difficulty on an earlier

word (spillover).

To anticipate our results, when averaged over the disambiguating region, RNN surprisal

correctly predicted a slowdown in the disambiguating region of ambiguous sentences, com-

pared to unambiguous controls, in all three constructions; in other words, the qualitative pre-

dictions of the surprisal account of garden-path effects were borne out, but the relative and

absolute-quantitative predictions were not. Surprisal underestimated the empirically observed

slowdown in all three constructions. The discrepancy varied across constructions: it was
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small in NP/S, moderate in MV/RR, and very large in NP/Z. Surprisal predicted numeri-

cally larger disambiguation difficulty in NP/S than NP/Z sentences, the opposite pattern from

humans. Finally, the detailed word-by-word contour of the garden-path effect over the dis-

ambiguating region was not well predicted by surprisal, even at the qualitative level of expla-

nation. With important limitations that we discuss next, these results challenge the hypoth-

esis that processing difficulty in garden-path sentences can be reduced to predictability, and

suggest that the disambiguation of garden-path sentences may engage additional reanalysis

mechanisms.

2. Methods

2.1. Materials

We study three classic types of temporary syntactic ambiguities (Frazier, 1979). The first

type is the NP/S ambiguity, illustrated in (4a):

4.

a. The employees understood the contract would be changed very soon to accom-

modate all parties.

b. The employees understood that the contract would be changed very soon to

accommodate all parties.

The label NP/S reflects the fact that the ambiguous material the contract can initially serve

either as an NP complement of understood or as the subject of a sentential (S) complement.

An unambiguous version of this sentence can be created by adding the overt complementizer

that, as in (4b). Empirically, the underlined critical region would be changed is read faster in

(4b) than in (4a).

The second ambiguity we investigate is the NP/Z ambiguity discussed in the introduction,

and repeated here as (5a):

5.

a. Even though the girl phoned the instructor was very upset with her for missing a

lesson.

b. Even though the girl phoned, the instructor was very upset with her for missing a

lesson.

Sentences such as (5a) are referred to as NP/Z sentences because the ambiguous verb

phoned can be parsed either as a transitive verb, with the NP complement the instructor,

or as an intransitive verb, with a “zero” (Z) complement. An unambiguous version of this

sentence can be created by inserting a comma after the initial verb (5b); was very upset is

read faster in (5b) than in the ambiguous (5a). This ambiguity is often perceived to be harder

to resolve than NP/S.

The final type of ambiguity we study is the MV/RR ambiguity (Bever, 1970; MacDonald,

Just, & Carpenter, 1992), illustrated in (6a):
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6.

a. The experienced soldiers warned about the dangers conducted the midnight raid.

b. The experienced soldiers who were warned about the dangers conducted the

midnight raid.

This ambiguity is referred to as the MV/RR ambiguity because the verb warned can be ini-

tially parsed either as the MV of the sentence, with the interpretation that the soldiers were the

ones warning about the dangers, or as the verb of an RR clause, with the interpretation that the

soldiers were warned about the dangers by someone else. The MV reading is much more fre-

quent (Fine, Jaeger, Farmer, & Qian, 2013), and is typically the one that is initially preferred.

The disambiguating region in the temporarily ambiguous version of each pair of sentences,

underlined in the examples above, is read more slowly on average than the same region in

the unambiguous version. While the first word of the disambiguating region generally disam-

biguates the sentence, slowdown can be observed throughout the region because of spillover.

In the matched unambiguous version of each construction, these words are, of course, not dis-

ambiguating; to refer to these three words in both contexts we will also use the term “critical

region.”

2.2. Self-paced reading measurements

We focus our modeling efforts on reading times measured using the moving-window self-

paced reading paradigm (Just, Carpenter, & Woolley, 1982). In this paradigm, the words of

each sentence are initially replaced with dashes; participants press a key to reveal the next

word, at which point the previous word is replaced with dashes again. This paradigm rests on

the assumption that processing difficulty on a word can cause participants to delay advancing

to the next word of the sentence, although in practice any such delays are often observed on

subsequent words (“spillover”; see Sections 2.4 & 2.5).

We use the publicly available self-paced reading times reported by Prasad and Linzen (in

press, 2019). Prasad and Linzen (2019) had online participants recruited on Amazon Mechan-

ical Turk (224 subjects after standard exclusions) read sentences with NP/S and NP/Z ambigu-

ities. The materials were adopted from Grodner et al. (2003); the ambiguous NP was always

a plausible object of the verb (cf. Garnsey, Pearlmutter, Myers, & Lotocky 1997). Prasad and

Linzen (2019) found that the average garden-path effect in NP/S sentences was 15 ms, and the

corresponding effect for NP/Z sentences was 28 ms. Prasad and Linzen (in press) collected

self-paced reading times for MV/RR constructions from 73 subjects on the Prolific Academic

crowdsourcing platform; the mean garden-path effect for this construction was 22 ms. Impor-

tantly, participants in both studies also read filler sentences, with a variety of unambiguous

syntactic structures, as is standard in self-paced reading studies; we use these filler items next

to estimate the conversion factor between surprisal and reading time.

The effect sizes reported by Prasad and Linzen are smaller than those reported in earlier

work; for comparison, Grodner et al. (2003) reported a garden-path effect of 70 ms for the

NP/Z ambiguity while Prasad and Linzen report an effect of around 30 ms. These differences

may reflect differences between Prasad and Linzen’s online participants and the in-lab par-

ticipants from previous work; online experiments have obtained qualitatively similar results
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to earlier in-lab studies, though occasionally with faster reaction times overall (among many

others, Crump, McDonnell, & Gureckis 2013; Enochson & Culbertson 2015; Fine & Jaeger

2016; Linzen & Jaeger 2016). The lower effect size of the replication study could also be an

instance of the general finding that effect sizes reported in small-sample published studies

may be exaggerated if, as is often the case, publication is contingent on obtaining a statisti-

cally significant result (Vasishth, Mertzen, Jäger, & Gelman, 2018). If Prasad and Linzen’s

estimates are unusually low compared to the true effect size, our results may overestimate

surprisal’s ability to account for the full magnitude of the garden-path effect; a point we will

return to in Section 4.

2.3. Language models

We extract the RNN language model surprisal—negative log probability conditioned on the

preceding words—for each word in Prasad and Linzen’s materials.1 We adopt the architecture

of the neural language model used by Gulordava et al. (2018). This architecture consists of

two layers of long short-term memory (LSTM) recurrent units (Hochreiter & Schmidhuber,

1997). For further information about RNN language models, we refer the reader to Goldberg

(2017).

Our main analyses are based on the model released by Gulordava et al. (2018); this model

was trained on an 80 million word subset of English Wikipedia. We refer to this model as

Wiki RNN. This particular trained model has been extensively studied in the literature, and

has been shown to be sensitive to subject-verb agreement across intervening nouns (Gulordava

et al., 2018), filler-gap dependencies (Wilcox et al., 2018), and constructions with temporary

syntactic ambiguities (Frank & Hoeks, 2019; Futrell et al., 2019; van Schijndel & Linzen,

2018), among other syntactic phenomena.

Since Wikipedia sentences may be longer and more complex than the sentences that make

up the bulk of the linguistic experience of participants in the reading studies we model, an

RNN language model trained on Wikipedia may assign unrealistically high probability to

complex constructions such as the ones we investigate, leading our model to systematically

underpredict garden-path effects. To address this concern, we trained another RNN language

model on a soap opera dialog corpus (Davies, 2011), using similar parameters to those used

to train Wiki RNN;2 we refer to this model as Soap RNN. The average sentence length in the

soap opera training corpus is nine words, much shorter than the average sentence length of the

Wikipedia training corpus (27 words). Visual inspection of this corpus suggests that the syn-

tactic structures it includes tend to be much simpler than those that are typical in Wikipedia.

2.4. Accounting for spillover

The surprisal of a word affects self-paced reading time not only at the word itself but also

in at least the three subsequent words (Smith & Levy, 2013). This phenomenon, referred to

as spillover (Mitchell, 1984), has two implications: first, the garden-path effect observed in

human experiments is spread over multiple words; and second, reading times on the critical

region are affected not only by the surprisal of the words of the critical region but also by
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the surprisal of material preceding the critical region. For concreteness, consider the MV/RR

sentence (7a):

7.

a. The experienced soldiers warned about the dangers conducted the midnight raid.

b. The experienced soldiers who were warned about the dangers conducted the

midnight raid.

Reading times on a word within the underlined critical region, such as midnight, are

affected by spillover from other words in the critical region (e.g., conducted) as well as from

words that precede the region (e.g., dangers). Ignoring the spillover from the surprisal of

the words preceding the word we are currently analyzing, then, can distort our estimates of

the garden-path effect. Likewise, the surprisal of midnight affects reading times not only on

midnight itself but also on raid. Consequently, restricting the analysis of reading times to

the critical region, without including subsequent words, may underestimate the size of the

garden-path effect.

Neural network language models do not display spillover effects “out of the box.” Since

disambiguation occurs entirely at the first word of the critical region (conducted in the above

example)—subsequent words of the critical region do not provide any additional informa-

tion about the relevant parsing decision—surprisal on the second and third word of the crit-

ical region is identical across conditions. However, since reading times at the critical region

depend on the surprisal of both critical and precritical words—which, in turn, is affected by

the presence or absence of the phrase who were—linking the language model’s prediction to

human reading times crucially requires taking into account not only the difference across the

two conditions in the surprisal of the disambiguating word itself but also the difference in

the complex pattern of spillover influence due to surprisal. These considerations suggest that

a spillover-adjusted linking function is essential for predicting reading times from surprisal.

We describe such a linking function in the following section.

2.5. Estimating the quantitative effect of surprisal on reading times

Smith and Levy (2013) show that, all else being equal, there is a linear relationship between

the surprisal of a word and reading times on that word and the following ones. The coefficient

of this linear relationship varies depending on the distance between the word whose surprisal

is considered and the word on which reading times are measured. We apply the procedure

described by Smith and Levy (2013) to compute these coefficients, which we refer to as

conversion factors, from the reading times for the filler sentences from Prasad and Linzen

(2019), sentences that do not include examples of the three types of temporary ambiguity

in question. To foreshadow the conclusions of the analysis we present in this section, the

total surprisal-to-RT (reading time) conversion factor, when summed across the word whose

surprisal is considered and the three subsequent words, was approximately 2 ms/bit for our

both models.

To estimate the conversion factors, we fit a linear mixed-effects model, with reading times

as the dependent variable, and, as fixed effects, the following properties of the current word



10 of 31 M. van Schijndel, T. Linzen / Cognitive Science 45 (2021)

(wi) and the preceding three words (wi−3, wi−2, and wi−1): surprisal (Si−3, Si−2, Si−1, Si),

entropy (Hi−3, . . . , Hi), entropy reduction (�Hi−3, . . . , �Hi), word frequency ( fi−3, . . . , fi),

word length (li−3, . . . , li), and the position of the word in the sentence (pi). Entropy and

entropy reduction were computed based on the probability distribution over the vocabulary

defined by the output layer of the network at each time step. In other words, we used next-

word entropy rather than the entropy over all possible sequences (for discussion, see Linzen

& Jaeger 2016), as the latter is intractable to compute for RNN language models. We also

included fixed effects for the interaction between word length and frequency within each

word in the three-word spillover window (e.g., we included fi−1 : li−1 but not fi−1 : li−3).

Finally, we included by-participant random intercepts. Formally, our model was as follows:

RT ∼ Si + Si−1 + Si−2 + Si−3 + Hi + Hi−1 + Hi−2 + Hi−3 + �Hi + �Hi−1 + �Hi−2

+ �Hi−3 + pi + li ∗ fi + li−1 ∗ fi−1 + li−2 ∗ fi−2 + li−3 ∗ fi−3 + (1 | subject), (1)

where the notation x ∗ y indicates that x, y and their interaction x : y were all included in the

model. We reiterate that this method to compute the conversion factor relies on the theoretical

assumption, confirmed by Smith and Levy (2013), that surprisal has a linear effect on reading

times. The entropy reduction hypothesis similarly predicts a linear effect of entropy reduction

on reading times; there is some empirical evidence of the effectiveness of entropy reduction

in predicting reading times ((Frank, 2010; Linzen & Jaeger, 2016; Lowder, Choi, Ferreira,

& Henderson, 2018); for a less positive conclusion, see Aurnhammer & Frank, 2019). The

remaining predictors included in the regression are the control variables used by Smith and

Levy (2013).

Having regressed the reading times of filler (nongarden path) sentences on the values of

each complexity metric, we use the regression coefficient values to generate a conversion

factor from each of the complexity metrics to milliseconds of reading time. We only retain

regression coefficients that were significantly different from zero at the p < .01 level. In the

case of surprisal, for example, if the coefficients for Si−1, Si−2, and Si−3 were significant, we

concluded that these surprisal values robustly mapped onto reading times for filler sentences,

and that they were therefore predicted to map robustly onto the reading times for garden-path

sentences, if those were driven by surprisal.

In what follows, we refer to the conversion factors as δ−3, δ−2, δ−1, and δ0. In the case of

surprisal, those would correspond to Si−3, Si−2, Si−1, and Si, respectively. Our analysis did not

reveal a significant effect of the surprisal of a word on its own reading time (δ0Si). This finding

is consistent with previous findings that spillover effects are very pronounced in self-paced

reading times (e.g., Smith & Levy, 2013), and underscore the need to properly account for

spillover when analyzing self-paced reading data. Overall, we predicted the spillover-adjusted

surprisal effect Ŝi on the ith word of the sentence as follows:

Ŝi = δ−3Si−3 + δ−2Si−2 + δ−1Si−1. (2)

For the Wiki RNN language model, our estimates of the individual spillover conversion

factors for surprisal were δ−1 = 1.1 ms/bit, δ−2 = 0.37 ms/bit, and δ−3 = 0.39 ms/bit (the

full set of conversion factors, for the two language models and three complexity metrics, is



M. van Schijndel, T. Linzen / Cognitive Science 45 (2021) 11 of 31

Table 1

Conversion factors for each information-theoretic measure for each RNN

Measure Model δ−3 δ−2 δ−1 δ0

Surprisal Wiki RNN 0.39 0.37 1.10

Soap RNN 0.44 0.91 0.83

Entropy Wiki RNN −3.98 9.17

Soap RNN −5.50 7.04

Entropy reduction Wiki RNN 1.63 2.17 9.98

Soap RNN 1.64 3.52 11.71

Note. We report only conversion factors that were determined to be significant (without correction) to p < .01

during regression to filler items. These coefficients were thought to be reliable enough to use when predicting

garden-path effect magnitudes in our analyses. Post hoc analysis confirmed that our results hold without this

significance threshold as well.

provided in Table 1). These conversion factors indicate, for instance, that each additional bit

of surprisal of the word that occurred three words before the current word is expected to cause

a slowdown of 0.39 ms on the current word. This slowdown is summed with the influence of

the surprisal of the two other intervening words to produce a predicted reading time for the

current word.

3. Analyses

3.1. Overview

Before we discuss our analyses, we briefly reiterate the logic behind them. Recall that

surprisal theory assumes that every bit of surprisal causes a fixed slowdown (an increment

in milliseconds), regardless of the syntactic context in which the surprising event occurs. As

such, we can measure the linear correlation between surprisal and reading times on sentences

without prominent syntactic ambiguities, and use this correlation to estimate the slowdown

in milliseconds caused by each bit of surprisal. If, as argued by the surprisal hypothesis,

syntactic disambiguation difficulty is driven entirely by the conditional probability of the

disambiguating words, this surprisal-to-RT conversion should be sufficient to fully explain

the magnitude of the garden-path effect measured in a self-paced reading study.

We report three analyses that rely on this logic. Analysis 1 follows the traditional analysis

approach in the human behavioral literature and aggregates human reading times and model

predictions over the three words of the critical region. Analysis 2 breaks down the predicted

and empirical reading times for each of the words of the critical region, with the goal of

determining whether language model surprisal, in conjunction with our spillover-adjusted

linking function, correctly identifies the precise locus of processing difficulty in each type of

ambiguity. As we will see, both Analyses 1 and 2 identify significant discrepancies between

models and humans. Analysis 3 extends the methodology we introduce in Analysis 1 to next-

word entropy as well as entropy reduction computed from next-word entropy.
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We then report two control analyses. Analysis 4 tests the hypothesis that the failure of RNN

surprisal to predict the magnitude of the garden-path effect is due to a floor effect, where

the language models simply never assign low enough probabilities in any context, either in

garden-path sentences or elsewhere; we do not find support for this hypothesis. Finally, Anal-

ysis 5 shows that the language models’ predictions accurately reflect the syntactic structure of

temporarily ambiguous sentences, indicating that surprisal’s failure to predict empirical read-

ing times cannot be straightforwardly attributed to the RNNs’ failure to analyze the syntactic

structure of the sentence.

3.2. Analysis 1: Aggregating predicted and empirical reading times over the critical region

We first report an analysis that aggregates reading times and model predictions over the

three words of the critical region, following standard practice in the sentence processing liter-

ature. Using the approach described in Section 2, we derived spillover-adjusted reading time

predictions from the Wiki RNN and Soap RNN language models. We then conducted t-tests

paired by item for each combination of model (Wiki RNN and Soap RNN) and construction

(NP/S, NP/Z, and MV/RR) to determine whether there was a statistically significant differ-

ence between the garden-path effect predicted by the model and the empirical effect reported

by Prasad and Linzen. As shown in Fig. 1, the two models predicted effects of very simi-

lar magnitudes, and both greatly underestimated the magnitude of garden-path effects across

constructions; the difference between predicted and empirical RTs was highly significant for

both Wiki RNN (NP/S: p = .005; NP/Z: p < .001; MV/RR: p < .001) and Soap RNN (NP/S:

p = .006; NP/Z: p < .001; MV/RR: p < .001).3

The conclusions of Analysis 1 are straightforward. If, as argued by surprisal theory, the

relationship between surprisal and reading times is linear, and surprisal accounts for the entire

processing difficulty observed in the disambiguating region of garden-path sentences, then a

conversion factor derived from filler sentences, which do not exhibit perceptible syntactic

ambiguities, should be able to predict reading times in garden-path sentences as well; our

results suggest that that is not the case.

3.3. Analysis 2: Predicting word-by-word reading times

Analysis 1 examined the garden-path effect averaged over the critical region, following

standard practice in the analysis of studies of human sentence processing using self-paced

reading. To obtain a more fine-grained picture of the models’ predictions, we next examined

the predicted reading time for each word in the critical region compared with the human

garden path effect observed on that word (see Fig. 2). As before, statistical significance was

assessed using t-tests for each sentence position, paired across the ambiguous and unambigu-

ous version of each item.4

Here too, we found that the models systematically underpredicted the empirical garden-

path effects in every construction and for nearly every word position. The lone exception

was the first word of the disambiguating region of the MV/RR construction, where neither

humans nor RNNs showed a significant garden-path effect. Recall that if spillover is not
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Fig. 1. Difference in reading times between ambiguous and unambiguous sentences, averaged over the three words

of the critical region, as predicted by the Wiki RNN language model (in pink) and the Soap RNN language model

(in green), compared to empirical reading times on the region (in blue). Each subplot shows the disambigua-

tion region of (a) ambiguous NP/S sentences compared to matched unambiguous controls (example (4) in the

text); (b) ambiguous NP/Z sentences compared to matched unambiguous controls (example (5) in the text); (c)

ambiguous MV/RR sentences compared to matched unambiguous controls (example (6) in the text). The bars

indicate the mean predicted or empirical RT, across items; the error bars represent bootstrapped 95% confidence

intervals.

taken into account, the first word of the disambiguating region is expected to carry the entire

disambiguation effect predicted by the RNNs. We take this convergence between spillover-

adjusted predicted RTs and empirical RTs to validate our adjustment for spillover. In the

remainder of this section, we discuss the detailed empirical and predicted pattern for each con-

struction.

3.3.1. NP/S

In this construction, the empirical effect was spread over the entire critical region, with

no significant differences between any two points in the region (all p > .05), though there

was a numerical decrease over the course of the critical region. Qualitatively, the predic-

tions derived from Wiki RNN matched the empirical pattern, with a decrease over the critical

region; unlike in the empirical reading times, this decrease in reading times reached signif-

icance in Wiki RNN’s predictions (p < .001). By contrast, Soap RNN predicted a qualita-

tively constant effect over the entire region; significance tests showed that the effect was in

fact larger on the final word in the region (p = .005), the opposite pattern from the human

one, albeit with a very small effect size. Overall, the predicted time course of the NP/S effect
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Fig. 2. Differences in word-by-word reading times between ambiguous and unambiguous sentences on the first,

second, and third words of the disambiguating region, as predicted by the language models, compared to empir-

ical reading times. The subplot shows the disambiguation region of: (a) ambiguous NP/S sentences compared to

matched unambiguous controls (example (4) in the text); (b) ambiguous NP/Z sentences compared to matched

unambiguous controls (example (5) in the text); (c) ambiguous MV/RR sentences compared to matched unam-

biguous controls (example (6) in the text). Error bars represent bootstrapped 95% confidence intervals.

was roughly in line with the empirical NP/S effect, though, as mentioned above, the predicted

effect magnitudes are much smaller than the empirical magnitudes.

3.3.2. NP/Z

In NP/Z sentences, the first and second words of the critical region carried the bulk of

the empirical garden-path effect: the third word of the critical region showed a significantly

smaller effect than the other two words (both comparisons, p < .01). This reduction at the

final word of the region was correctly predicted by Wiki RNN (p < .001). At the same time,

both models predicted significant differences between all words in the region (all p < .001),

and Soap RNN predicted that the effect should be highest in the final word of the critical

region. Further, both models predicted that the first word would be read more slowly in the

unambiguous condition than in the ambiguous condition (a reverse garden-path effect). By

contrast, humans exhibited a large NP/Z garden-path effect in both the first and second word

of the region.

3.3.3. MV/RR

The second and third words of the critical region carried most of the human garden-path

effect in the MV/RR ambiguity, with almost no empirical garden-path effect observed on
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the first word of the critical region (the second word’s effect is significantly larger than the

first word’s; p < .0001). Both RNNs correctly predicted that the garden-path effect should be

significantly larger on the second word of the region than on the first one (both p < .001).

Both models also predicted that the effect should significantly subside by the third word of

the region (both p < .001); the empirical effect was numerically reduced at the third word,

but did not reach statistical significance. Further, the models correctly predicted that the first

word in the region should not exhibit an appreciable garden-path effect. In summary, as with

NP/S constructions, the models were able to correctly predict the qualitative time course of

the MV/RR effect throughout the region, but the magnitude of the predicted effects was much

smaller than that of the empirical effects.

3.3.4. Discussion

In human reading times, the detailed word-by-word contour of the garden-path effect shows

clear differences across the three constructions. This is consistent with the proposal that the

disambiguation of different temporary syntactic ambiguities invokes different recovery mech-

anisms (compare with the distinction between “easy” and “hard” sentences made by Pritch-

ett, 1988). Qualitatively speaking, the empirical time course contours of NP/S and MV/RR

garden-path effects were correctly predicted by both models, suggesting that humans’ pro-

cessing of these types of garden-path sentences may be tied, through word predictability, to

the frequency distributions of the syntactic constructions in question, which are reflected in

the statistics of the corpora that the RNNs were trained on. At the same time, the models

predicted similar effect magnitudes for NP/S and MV/RR constructions; this contrasts with

the observation that humans show a much larger effect in the MV/RR ambiguity than the

NP/S ambiguity. This discrepancy suggests that humans process these two constructions in

different ways.

It is possible, of course, that some of the discrepancy in magnitude between the empirical

and predicted garden-path effects arises from an incorrect estimate of the conversion factor

between bits of surprisal and milliseconds of reading times. Crucially, however, the fact that

this discrepancy differs in magnitude across constructions entails that even with a conversion

factor large enough to predict the NP/S effect, RNNs would still underpredict the MV/RR

effect (see van Schijndel & Linzen, 2018). As we discuss in Section 4, this result is arguably

consistent with the hypothesis that the human processing of MV/RR ambiguities involves a

syntactic reprocessing mechanism (Grodner et al., 2003). Such a reprocessing mechanism

could amplify the effect of predictability, making it super-linear. On the other hand, the find-

ing that RNNs were unable to predict even the qualitative time course of NP/Z garden-path

effects in humans supports the hypothesis that predictability-independent restructuring mech-

anisms are involved in recovering from this ambiguity, as proposed, among others, by Sturt

et al. (1999).

In summary, as in Analysis 1, the differences between the predicted and empirical effects,

in both magnitude and time course, suggest that, at a minimum, the relationship between sur-

prisal and reading times in garden-path sentences is not linear, and, more likely, that surprisal

cannot on its own account for the magnitude and time course of all garden-path effects in

human reading.
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Fig. 3. Difference in reading time between ambiguous and umambiguous sentences, averaged over the three words

of the critical region, as predicted by the entropy of the Wiki RNN language model (in pink) and the Soap RNN

language model (in green), compared to empirical reading times on the region (in blue). Each subplot shows the

disambiguation region of (a) ambiguous NP/S sentences compared to matched unambiguous controls (example (4)

in the text); (b) ambiguous NP/Z sentences compared to matched unambiguous controls (example (5) in the text);

(c) ambiguous MV/RR sentences compared to matched unambiguous controls (example (6) in the text). The bars

indicate the mean predicted or empirical RT, across items; the error bars represent bootstrapped 95% confidence

intervals.

3.4. Analysis 3: Entropy-based complexity metrics

While much previous work has attributed garden-path effects to surprisal (Futrell et al.,

2019; Hale, 2001; Levy, 2013; van Schijndel & Linzen, 2018), it is not the only one-

stage theory of processing difficulty proposed in the literature. In particular, two prominent

information-theoretic measures have been shown to predict reading times in some contexts:

single-step entropy (Roark et al., 2009; van Schijndel & Linzen, 2019) and entropy reduc-

tion (Frank, 2013; Hale, 2006; Linzen & Jaeger, 2016). To determine whether these metrics,

as single-stage theories, can explain human garden-path effects, we follow the same proce-

dure we used for surprisal: we first use the filler sentences from Prasad and Linzen (2019)

to compute spillover-controlled conversion factors for each combination of model and pro-

cessing difficulty metric, then use this conversion factor to predict processing difficulty in

garden-path sentences read by the same participants, assuming a linear relationship between

the complexity metric and the observed slowdown (see Table 1).5

We found that entropy and entropy reduction were much poorer predictors of human

garden-path effects than surprisal (Figs. 3 and 4). In fact, in most cases these measures

predicted no effect at all (entropy reduction) or an effect in the opposite direction from the
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Fig. 4. Difference in reading time between ambiguous and umambiguous sentences, averaged over the three words

of the critical region, as predicted by the entropy reduction of the Wiki RNN language model (in pink) and the

Soap RNN language model (in green), compared to empirical reading times on the region (in blue). Each subplot

shows the disambiguation region of (a) ambiguous NP/S sentences compared to matched unambiguous controls

(example (4) in the text); (b) ambiguous NP/Z sentences compared to matched unambiguous controls (example (5)

in the text); (c) ambiguous MV/RR sentences compared to matched unambiguous controls (example (6) in the

text). The bars indicate the mean predicted or empirical RT, across items. Error bars represent bootstrapped 95%

confidence intervals.

empirical one (entropy). This suggests that even if we relax the assumption that there is a lin-

ear relationship between these metrics and processing difficulty, and consider other positive

and monotonic linking functions, these measures will not be able to predict human garden-

path effects. We stress that neither of these complexity metrics faithfully implements the

entropy reduction hypothesis (Hale, 2003), which requires computing entropy over complete

sentences, rather than only the next word, as we did here; we are unable to test that hypothesis

as we are not aware of methods that can estimate full-sentence entropy from RNN language

models. However, our results are consistent with those of Linzen and Jaeger (2016) who did

derive full-sentence entropy from a grammar-based language model, and found that entropy

reduction computed in this way did not predict a garden-path effect in the correct direction.

3.5. Analysis 4: Can RNN language models assign sufficiently low probabilities?

For the surprisal hypothesis to derive the full magnitude of garden-path effects, surprisal

in garden-path sentences needs to be fairly large. The human effect size for NP/Z sentences

reported by Prasad and Linzen (2019), for example, was approximately 28 ms; with a con-

versation factor of 2 ms per bit of surprisal this entails that the surprisal of the first word of
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Fig. 5. Count histograms of binned (N = 100) surprisal values over all tokens in filler sentences (in blue) and

garden-path sentences (in orange), as estimated from the Wiki RNN (left) and Soap RNN (right).

the ambiguous region needs to be 14 bits higher in ambiguous than unambiguous sentences.

If we assume that the surprisal of this word in unambiguous items is around 3–5 bits, then

its surprisal in ambiguous sentences needs to be around 18 bits (equivalent to a probability

of about .000004), and, assuming some variability across sentences, even larger than that for

some of the items. Could our underestimates of the magnitude of the effect be due to a ceiling

on the surprisal values that our language models can produce, regardless of the context? To

determine whether that is the case, we binned the surprisal values for each language model for

each input token in the Prasad and Linzen (2019) dataset, separately for filler sentences and

for NP/Z and NP/S sentences. We used 100 bins. We omitted from the analysis the first token

of each sentence, which was very often the word “The”; this was done to avoid distorting the

histograms with a large number of identical surprisal values.

As shown in Fig. 5, there was not a sharp ceiling for surprisal values, which we might

expect if models were simply unable to capture very infrequent events; in fact, the surprisal

values they predicted, especially for filler sentences, exceeded 18 bits with some regularity.

We cannot rule out the possibility that the models’ probabilities for rare events are more

poorly calibrated than those assigned to common events. At the same time, we emphasize

that the probabilities assigned by the models would need to be systematically biased in the

same direction, and by orders of magnitude, for the surprisal hypothesis to remain viable.

3.6. Analysis 5: Do RNN language models make appropriate syntactic predictions?

Could the models’ inability to predict the magnitude of the human garden-path effect be

due to a broad failure to take the syntactic structure of temporarily ambiguous sentences

into account when making word predictions? Such a lack of sensitivity to syntactic structure

would entail that the particular language models we used in this paper cannot be used to

address the viability of the surprisal hypothesis. While work that suggests that the predictions

of RNN language models are in fact sensitive to various syntactic constraints provides reason
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Fig. 6. Part-of-speech predictions of the recurrent neural network language model on the first word of the critical

region of unambiguous sentences, subtracted from the predictions on the same word in their ambiguous counter-

parts, for (a) NP/S sentences, (b) NP/Z sentences, and (c) MV/RR sentences. Positive values indicate that the part

of speech in question is more likely in ambiguous sentences, and negative values indicate that it is more likely in

unambiguous sentences.

for optimism (Futrell et al., 2019; Linzen, Dupoux, & Goldberg, 2016; Wilcox et al., 2018),

the goal of the current section is to explore the validity of this concern for the particular

constructions and items used in this study.

Since the predictions made by the two language models were qualitatively similar to one

another, we focus our analysis in this section on Wiki RNN. As a window into this model’s

syntactic predictions at the first word of each construction’s critical region, we grouped the

lexical predictions of the model by the part of speech that was most frequently assigned to

each of the words in the vocabulary in the Wikipedia corpus used by Linzen, Dupoux, &

Goldberg (2016). For example, although man can either be a noun (see the man) or a verb

(man the decks), it most commonly occurs as a noun, so we would assign the probability

mass associated with man to the noun category. Summing these probabilities over the entire

vocabulary, we then inferred the model’s syntactic predictions from the resulting probability

distribution over upcoming parts of speech in ambiguous sentences compared to the analo-

gous distribution for the matched unambiguous sentence.

At the beginning of the critical region of unambiguous (control) sentences, Wiki RNN

assigned a high probability to verbs, consistent with the correct parse. This was the case for

all three constructions. Conversely, in the ambiguous conditions, the model was, like humans,

garden-pathed into making syntactic predictions that are not consistent with the ultimately

correct parse. In particular, in ambiguous NP/S sentences (Fig. 6a), the model generally

encoded the expectation that a prepositional phrase should appear next (e.g., Mary saw the

doctor at …); it also assigned some probability mass to the possibility that the upcoming

token marks the end of the clause (i.e., a punctuation mark or a conjunction). Both types of
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continuations are consistent with the “NP” parse, where Mary saw the doctor, and not with

the ultimately correct “S” parse, where Mary saw that the doctor was doing something. In

ambiguous NP/Z sentences (Fig. 6b), the model again predicted that the beginning of the

sentence (When Mary visited the doctor) would be followed by a prepositional phrase or a

punctuation mark other than a period (e.g., a comma), both of which are continuations con-

sistent with the ultimately incorrect “NP” parse, where doctor is the object of visited. Lastly,

in MV/RR ambiguous sentences (Fig. 6c), the model predicted that a punctuation mark would

come next, most likely a period (The soldiers warned about the dangers.), consistent with the

preferred but ultimately incorrect MV parse.

Overall, Wiki RNN’s predictions reflect sensitivity to the syntactic structure of the tem-

porarily ambiguous sentences used in our experiments; this is consistent with the findings of

Futrell et al. (2019). We conclude that the failure of RNN surprisal to predict the magnitude

of human garden path effects cannot be attributed to the RNNs’ failure to track the relevant

syntactic ambiguity.

4. General discussion

Garden-path sentences are temporarily ambiguous sentences that are eventually disam-

biguated in favor of the initially dispreferred parse. In those sentences, reading times at the

disambiguation point are elevated compared to matched unambiguous control sentences; this

relative slowdown is referred to as a garden-path effect. A number of accounts have attributed

this slowdown to the processing cost incurred by reanalysis or pruning strategies specific to

the human parsing system (Bader, 1998; Jurafsky, 1996; Narayanan & Jurafsky, 1998; Pritch-

ett, 1988; Sturt, Pickering, & Crocker, 1999). More recently, proponents of the surprisal

hypothesis have suggested that the elevated reading times in the disambiguating region of

garden-path sentences can be attributed entirely to the fact that the words in the disambiguat-

ing region are unpredictable (Hale, 2001; Levy, 2013). Since predictability affects sentence

processing far beyond temporarily ambiguous sentences (Ehrlich & Rayner, 1981), such an

account is preferable on parsimony grounds, as it obviates the need for assumptions that are

specific to syntactic processing.

Such a parsimonious single-stage account holds an undeniable appeal. But, as we have

argued, to show that word surprisal makes it unnecessary to invoke parsing-specific mech-

anisms in an account of garden-path processing difficulty, it is not enough to show that the

disambiguating word is unpredictable; rather, predictability would need to explain the full

magnitude of the effect. Our goal in this paper was to test empirically whether that is the

case. To do so, we first estimated a conversion factor quantifying the effect of predictability

on reading times in filler sentences, which did not include garden-path constructions. In esti-

mating the conversion factor, we took into account spillover effects, where the predictability

of a word affects reading times on later words. We then estimated the surprisal of the disam-

biguating region in three types of garden-path sentences—NP/S, NP/Z, and MV/RR—from

RNN language models, trained on either Wikipedia articles or soap opera dialogues. Finally,

we multiplied these surprisal estimates by the conversion factor to generate predicted reading
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times for the disambiguating region of garden-path sentences, which we then compared to

empirical reading times from human experiments.

While the language models indeed predicted higher surprisal in the critical region of tem-

porarily ambiguous sentences compared to control sentences (in line with Futrell et al., 2019;

Hale, 2001; Levy, 2013), the difference in surprisal between the ambiguous and unambiguous

versions of each sentence systematically underpredicted the magnitude of the effect in human

studies. In particular, unlike humans, which exhibit much larger garden-path effects in NP/Z

than NP/S sentences, language models displayed slightly lower surprisal in NP/Z sentences

than NP/S sentences. Similarly, the language models predicted similar effect magnitudes in

NP/S and MV/RR constructions, whereas in human studies MV/RR constructions show a

substantially larger garden-path effect than NP/S constructions. Given this complex pattern

of discrepancies, then, linear linking functions of surprisal to human behavior have no hope

of deriving the human pattern, even if the true conversion factor between surprisal and RTs is

very different from the one we estimated.

Finally, we reported two control analyses. First, Analysis 4 inspected the overall distribu-

tion of surprisal values assigned to each of the words in the filler, NP/S, and NP/Z sentences,

both inside and outside the critical region, and confirmed that RNN language models regu-

larly assign very low probabilities, in the range required to explain garden-path effects using

surprisal. This finding both justified our use of broad-coverage language models, as opposed

to cloze responses—surprisal values of 20 bits or more would be impossible to elicit reliably

using the cloze procedure—and indicated that the failure of the models to correctly predict

garden-path magnitudes was not driven by the RNN language models’ inability to assign low

enough probabilities to words in general.

Second, in Analysis 5 we verified that the models’ syntactic predictions for temporarily

ambiguous sentences were consistent with the structure of those sentences. Unlike grammar-

based language models, which make available interpretable representations of the structures

considered at each point in the sentence, RNNs only output lexical predictions. To address

this issue, we inferred the models’ syntactic predictions from probabilities aggregated over

parts of speech. In unambiguous conditions, our RNN language model made the correct pre-

diction of a verb, and in the ambiguous conditions it made alternative predictions consistent

with the preferred parse (e.g., given the context When Mary visited the doctor, a period indi-

cating the end of the sentence was not assigned a significant probability, while a comma was,

appropriately). This analysis supports the hypothesis that the probability distribution defined

by the RNN tracks the expected set of syntactic parses.

4.1. Word-by-word reading patterns

Traditional analyses target mean reading times in the critical region. While we report an

analysis that follows this approach (Analysis 1), we also explored empirical and predicted

word-by-word reading patterns throughout the critical region of each of the garden-path con-

structions (in Analysis 2). This second analysis revealed that the empirical NP/S and NP/Z

garden-path effects are spread across the three words of the critical region, while the MV/RR

garden-path effect is only detectable on the second and third words of the critical region. RNN
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surprisal, when combined with a spillover-adjusted linking function, was able to predict the

contour of the human garden-path effect for the NP/S and MV/RR constructions, but not for

NP/Z. The fact that the contour of the human effect differs by construction suggests that there

may be multiple distinct mechanisms that underlie each of these behavioral responses.

Two-stage accounts of human processing of garden-path sentences have often hypothe-

sized that syntactic reanalysis mechanisms rely on tree edit operations, which transform the

initially preferred parse into a new parse that is compatible with the disambiguating words

(Pritchett, 1988; Sturt, 1997). Under these theories, reanalysis is more costly the more the

structures before and after the edit operation differ from each other. For example, Sturt et al.

(1999) hypothesized that the garden-path effect is larger in NP/Z than NP/S constructions

because in NP/Z the ambiguous NP needs to be moved from the subtree representing the

subordinate clause (Even though the girl phoned the instructor…) to a new subtree, the main

clause subtree (the instructor was very upset). Since this new subtree is not dominated by the

subtree that contained the NP before the transformation, reanalysis difficulty is greater. In the

NP/S ambiguity, by contrast, the initially ambiguous NP remains within the same subtree—

the main clause verb phrase—throughout the reanalysis. These theories predict that the time

course of processing during the critical region of garden-path constructions should depend

only on the similarity or dissimilarity of the associated syntactic structures, and not on the

conditional probabilities of the structures in question.

The word-by-word human garden-path effects in NP/S and MV/RR constructions followed

a similar time course to the RNNs’ predictions for those constructions. Since RNN predic-

tions are solely based on the occurrence frequencies in the training data rather than reflecting

human processing limitations such as working memory constraints, their ability to predict the

time course of garden-path processing in these constructions suggests that human reanalysis

processes in these constructions may be related to syntactic co-occurrence frequencies.

One repair mechanism that could produce effects such those we observed with MV/RR

sentences—ones that are qualitatively consistent with the predictions of surprisal, but whose

magnitudes are substantially larger than those predicted by surprisal—is the one proposed by

Grodner et al. (2003). They hypothesized that readers suppress an initially preferred parse

once it proves to be incorrect, as in a garden-path construction. The readers then reprocess the

observed sequence using standard processing mechanisms but with the incorrect distractor

parse suppressed. Under this theory, there are no special reanalysis mechanisms aside from

a means of suppressing disconfirmed parses. This hypothesis claims that all predictability

influences aside from the probability of the suppressed parse would impact both the initial

parse and the subsequent reanalysis parse. As a result, this theory would predict exaggerated

frequency effects whenever the reanalysis mechanism is invoked over the parallel reranking

mechanism involved in surprisal theory.

4.2. Relationship to other sources of processing difficulty

Reading behavior is affected by a range of factors other than surprisal. Those include word

length (Just et al., 1982), dependency locality (Gibson, 2000), retrieval interference (Lewis

& Vasishth, 2005), and others. To our knowledge, there are no proposals suggesting that
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all instances of syntactic processing difficulty can be attributed to surprisal; proponents of

surprisal theory have argued that surprisal needs to be supplemented with measures such as

verification cost (Demberg, Keller, & Koller, 2013) or memory and locality (Levy, 2013; Levy

& Keller, 2013). Could one of these factors account for processing difficulty in garden-path

sentences, replacing the need for either prediction-based or reanalysis-based accounts? We

are unfamiliar with any such proposals, and believe that this possibility is unlikely: factors

such as word length or memory retrieval interference are in all likelihood perfectly matched

across the ambiguous and unambiguous versions of each type of garden-path construction.

Factors other than surprisal do affect the processing of most words in filler sentences, which

we used to estimate the conversion factor between surprisal and reading times. We only con-

trolled for one of them (word length) when we estimated the conversion factor, and controlling

for additional variables may lead to even more accurate conversion factors. In any case, we

do not believe that our conclusions strongly depend on the precision of our estimate of the

conversion factor: in fact, in early analyses not included in the current paper (van Schijndel &

Linzen, 2018), we found that surprisal substantially underpredicted garden-path effects even

when the conversion factor was double the one we used in the current paper.

While discussions of garden-path effects tend to focus on the differences in syntactic struc-

ture between the ambiguous and unambiguous sentences, the processing of garden-path sen-

tences is also affected by semantic plausibility—for example, the plausibility of the ambigu-

ous NP as a direct object of the verb in NP/S sentences (Garnsey et al., 1997). This factor

could vary systematically between the ambiguous and unambiguous version of each construc-

tion, and across garden-path constructions. To address such potential plausibility confounds,

previous studies have supplemented language models with explicit models of semantic fit

(Padó et al., 2009). We believe this issue represented a greater cause for concern in earlier

studies, which computed surprisal using probabilistic context-free grammar models trained

on small corpora (approximately one million words). Such language models, while appro-

priately capturing the syntactic distinctions across conditions, may indeed fail to adequately

capture semantic plausibility constraints. By contrast, in this work we computed surprisal

using RNN language models trained on large corpora (e.g., 80 million words for Wiki RNN).

Much previous work has shown that such language models are able to capture semantic and

pragmatic generalizations through their distributed representations of words (e.g., Levy &

Goldberg, 2014; Mikolov, Yih, & Zweig, 2013; Schuster, Chen, & Degen, 2020), which were

unavailable to earlier grammar-based language models. Particularly pertinent to the current

work is the study by Frank and Hoeks (2019) who showed that the strength of the garden-

path effect predicted by RNN language models is modulated by semantic plausibility. Overall,

we expect surprisal computed from our RNN language models to capture the combination of

syntactic, semantic, and pragmatic generalizations required to account for garden-path effects

(Padó et al., 2009).

4.3. Converging evidence for two-stage accounts

Our analysis focused on self-paced reading times, a dependent measure that aggregates all

sources of difficulty in language processing into a single number: the amount of time taken
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to read a given word. At the same time, our conclusion that predictability is insufficient to

account for the strength of garden-path effects is consistent with the dissociation observed

in the event related potential literature between the N400 component, which is sensitive to

word predictability (Frank, Otten, Galli, & Vigliocco, 2015; Van Petten & Luka, 2012), and

the P600 component, which, while not straightforwardly related to word predictability, is

strongly modulated by disambiguation in favor of the dispreferred parse in garden-path sen-

tences (Osterhout, Holcomb, & Swinney, 1994). Evidence for a dissociation between pre-

dictability and reanalysis difficulty from the eye-tracking-while-reading paradigm is more

mixed; while early studies found that garden-path sentences are associated with a greater

probability of regressive eye movements (Frazier & Rayner, 1982), it has proved difficult to

isolate a consistent syntax-specific processing signature in this paradigm (Clifton, Staub, &

Rayner, 2007).

Unlike the experiments we presented here, which provide a direct test of surprisal’s pre-

dictions at the qualitative, relative, and quantitative levels, the dissociation between N400

and P600 bears on the predictions of surprisal theory only indirectly. Surprisal is intended

as a computational-level theory of reading behavior, in the sense of Marr (1982). As such,

its prediction—that less predictable words should be read more slowly—can arise from the

aggregate effect of any number of mental (or neural) processes. However, it is notable that the

linear relationship between surprisal and reading times breaks down in the same constructions

that give rise to the dissociation between N400 and P600. This arguably provides converg-

ing support for the existence of a second-stage reanalysis mechanism, which is indexed by

the P600, and causes a slowdown in reading that is significantly more severe than predicted

by surprisal.

4.4. A failure of the surprisal hypothesis or a failure of our language models?

The surprisal hypothesis can only be tested given a particular model that assigns pre-

dictability values to individual words. In this paper, we have used for this purpose two RNN

language models, trained on two different corpora (Wikipedia and soap opera dialogues).

The two models yielded largely converging results: surprisal estimates for the disambiguat-

ing word in garden-path sentences were insufficient to explain the magnitude of the human

garden-path effect. We have argued that RNN language models, and in particular those based

on the LSTM architecture used by Gulordava et al. (2018), are appropriate for testing the

surprisal hypothesis: they are sensitive to syntactic constraints in general (Futrell et al., 2019;

Wilcox et al., 2018), and, as we have shown in Analysis 5, make predictions that are quali-

tatively consistent with the correct analyses of the particular temporary syntactic ambiguities

we investigate.

It is certainly possible that a different language model could match the human reading

pattern. This would require surprisal estimates that are substantially higher across the board

than those of the models we tested, and, unlike our RNN language models, significantly higher

for NP/Z than NP/S constructions. Such differences in language model behavior could arise

from alternative architectures, such as an RNN grammar, which simultaneously parses the

sentence and predicts the next word (Dyer, Kuncoro, Ballesteros, & Smith, 2016; Wilcox,
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Qian, Futrell, Ballesteros, & Levy, 2019); an RNN trained to jointly predict the next word

and a syntactic property of the current word (Enguehard, Goldberg, & Linzen, 2017); or

architectures that differ from RNNs in their inductive biases in ways that are not explicitly

informed by syntactic structure, such as Transformers (Hu, Gauthier, Qian, Wilcox, & Levy,

2020; Merkx & Frank, 2021; Vaswani et al., 2017). A closer match between language model

and human predictions could also arise from a different training corpus: a text corpus that

matched the participants’ linguistic experience more closely—for example, one that included

a mix of dialogues, child-directed speech, newspaper text, and social media posts—or even a

multimodal corpus.

In light of the large space of possible language models, it may be difficult to definitively

falsify the surprisal hypothesis. To give an extreme example, one can imagine a modifica-

tion of one of our RNN language models that explicitly detects each of the three types of

temporary ambiguities, and divides the probabilities of words in the disambiguating region

by construction-specific factors, such that the resulting surprisal values fit the human results

perfectly. In future work, such circularity should be avoided by selecting a language model

based on external criteria, such as perplexity (Goodkind & Bicknell, 2018), or the model’s

generalization abilities in other syntactic contexts (Hu et al., 2020).

4.5. The surprisal conversion factor

The analyses reported in this paper were based on the assumption of a linear effect of sur-

prisal on reading time (Hale, 2001). We referred to the slowdown in milliseconds that can be

attributed to each bit of surprisal as the conversion factor. We conducted all of our analyses at

the group level: we estimated a single conversion factor for all participants, based on reading

time measurements from filler items, and fit it to the average garden-path effect across crit-

ical items and participants. This group-level analysis is a simplification, of course. In future

studies, more precise analyses might estimate a separate conversion factor for each subject,

or interpolate between subject-specific and group-level conversion factor using mixed-effects

models. Likewise, future analyses could take into account any across-item variability in the

strength of the garden-path effects, and use linking functions based on more sophisticated

models of spillover (Shain & Schuler, 2018).

Our estimate of the conversion factor for our data were approximately 2 ms/bit. This con-

trasts with the 4 ms/bit conversion factor estimated by Smith and Levy (2013). It is likely

that the main cause for this discrepancy is the subject population and experimental proce-

dure: the self-paced reading times reported by Smith and Levy (2013) were obtained from

undergraduate students who performed the experiment in the lab, whereas our participants

were recruited on crowdsourcing platforms and performed the experiment online. Self-paced

reading participants recruited on Mechanical Turk read much faster than in-lab participants;

Enochson and Culbertson (2015) report an average difference of 180 ms per word between

in-lab and online participants. The average garden-path effect measured in the data we model

is qualitatively consistent with this discrepancy: for NP/Z, for example, the garden-path effect

for Prasad and Linzen’s online participants was 28 ms compared to 70 ms in the in-lab study

of Grodner et al. (2003). Another factor that may have contributed to the difference between
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our conversion factor and that of Smith and Levy (2013) is the language model used to derive

surprisal estimates: Smith and Levy (2013) used a trigram model, which in general produces

less accurate probability estimates than the RNN language models we used (Gulordava et al.,

2018). It is unclear, however, whether we expect trigram surprisal to be systematically lower

than RNN surprisal in filler sentences, and especially to an extent that could result in a sub-

stantially higher conversion factor.

We note that the qualitative conclusions of the present work do not strongly depend on

the precise conversion factor we used, in two respects. First, in earlier work (van Schijndel

& Linzen, 2018), we found that surprisal substantially underestimated the empirical garden-

path effects even when we used the higher 4 ms/bit conversion factor derived from Smith and

Levy (2013). Second, because language model surprisal was higher for NP/S than NP/Z, but

the human garden path effect patterned in the opposite direction (lower for NP/S), there is no

single conversion factor that could bring the predictions of surprisal into alignment with the

empirical results.

5. Conclusion

We tested the hypothesis that word predictability can account for the full magnitude of

the syntactic disambiguation difficulty that arises in three types of temporarily ambiguous

sentences: NP/S, MV/RR, and NP/Z. Our results do not support this hypothesis: surprisal

estimated from RNN language models vastly underestimated the magnitude of the garden-

path effects and was unable to predict the relative difficulty of each construction compared to

the others. Independently from the results of our computational simulations, a close inspection

of the human reading times of words within each individual construction points to qualitative

differences in the behavioral responses to the three constructions, again calling into question

a uniform predictability-based account.

At a minimum, our results indicate that the relationship between surprisal and reading

times is not linear in conditions such as the MV/RR ambiguity. It is possible that such a

nonlinear relationship may arise naturally if surprisal is augmented with the noisy channel

or lossy context hypotheses (Bicknell & Levy, 2010; Futrell, Gibson, & Levy, 2020; Gibson,

Bergen, & Piantadosi, 2013; Levy, 2008a). However, this possibility cannot explain the quali-

tatively incorrect reading time predictions we observed in NP/Z constructions. Therefore, we

conclude that in addition to surprisal, human sentence processing likely involves a syntac-

tic repair mechanism (e.g., Sturt, 1997; Sturt, Pickering, & Crocker, 1999) or a reprocessing

mechanism (e.g., Grodner et al., 2003) that is invoked in challenging syntactic disambigua-

tion contexts.
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Notes

1 Code that estimates surprisal and other incremental complexity measures from our RNN

language models is available at https://github.com/vansky/neural-complexity.git.

2 Our training parameters were identical except that, due to memory constraints, we used

a batch size of 64 rather than the batch size of 128 used in Wiki RNN.

3 Throughout this paper, we report raw p values, not corrected for multiple comparisons.

In each section, we explicitly list our statistical tests to enable post hoc corrections for

multiple comparison. In general, however, the results we report are robust enough that

most p values survive correction for multiple corrections. In Analysis 1, we conducted 12

t-tests of whether the mean spillover-adjusted predictions differed from the mean human

reading times (paired by item) or from 0 (1-sample): 2 models × 3 constructions ×

2 comparisons.

4 In Analysis 2, for each of the two spillover-adjusted model predictions and the human

responses, we conducted 18 t-tests of whether each word in the critical region of a con-

struction differed from each other word (paired by item) or 0 (1-sample): 3 construc-

tions × 6 comparisons.

5 In Analysis 3, we conducted 12 t-tests of whether the mean spillover-adjusted predictions

differed from the mean human reading times (paired by item) or from 0 (1-sample): 2

models × 3 constructions × 2 comparisons.
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